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The COVID-19 pandemic dramatically changed human mobility patterns,
necessitating epidemiological models which capture the effects of changes in
mobility on virus spread’. We introduce a metapopulation SEIR model that integrates
fine-grained, dynamic mobility networks to simulate the spread of SARS-CoV-2in 10 of
thelargest US metropolitan statistical areas. Derived from cell phone data, our
mobility networks map the hourly movements of 98 million people from
neighborhoods (census block groups, or CBGs) to points of interest (POIs) such as
restaurants and religious establishments, connecting 57k CBGs to 553k POIs with 5.4
billion hourly edges. We show that by integrating these networks, a relatively simple
SEIR model can accurately fit the real case trajectory, despite substantial changes in
population behavior over time. Our model predicts that a small minority of
“superspreader” POls account for alarge majority of infections and that restricting
maximum occupancy at each POl is more effective than uniformly reducing mobility.
Our model also correctly predicts higher infection rates among disadvantaged racial
and socioeconomic groups? ®solely from differences in mobility: we find that
disadvantaged groups have not been able to reduce mobility as sharply, and that the

POls they visit are more crowded and therefore higher-risk. By capturing who is
infected at which locations, our model supports detailed analyses that caninform
more effective and equitable policy responses to COVID-19.

Inresponse to the COVID-19 crisis, stay-at-home orders were enacted
in many countries to reduce contact between individuals and slow
the spread of the virus®. Since then, public officials have continued to
deliberate over whentoreopen, which places are safeto returnto, and
how much activity to allow’. Answering these questions requires epi-
demiological models that can capturethe effects of changes in mobility
onvirus spread. In particular, findings of COVID-19 “super-spreader”
events ™ motivate models that canreflect the heterogeneous risks of
visiting different locations, while well-reported disparitiesininfection
rates® ® require models that can explain the disproportionate impact
of the virus on disadvantaged groups.

Toaddress these needs, we construct fine-grained dynamic mobility
networks from cell phone geolocation data, and use these networks to
model the spread of SARS-CoV-2 within 10 of the largest metropolitan
statistical areas (referred to below as metro areas) in the United States.
Thesenetworks map the hourly movements of 98 million people from
census blockgroups (CBGs), which are geographical units that typically
contain 600-3,000 people, to specific points of interest (POIs). As
showninTable S1, POIs are non-residential locations that people visit
such as restaurants, grocery stores, and religious establishments. On
top of each network, we overlay a metapopulation SEIR model that
trackstheinfection trajectories of each CBG as well as the POIs at which
these infections are likely to have occurred. This builds upon prior

work that models disease spread using aggregate> ™, historical?® %,
or synthetic mobility data>%; separately, other work has analyzed
mobility data in the context of COVID-19, but without an underlying
model of disease spread®*°,

Combining our epidemiological model with these mobility net-
works allows us to not only accurately fit observed case counts, but
also to conduct detailed analyses that can inform more effective and
equitable policy responses to COVID-19. By capturing information
about individual POIs (e.g., hourly number of visitors, median visit
duration), our model can estimate the impacts of specific reopening
strategies, suchasonly reopening certain POl categories or restricting
maximum occupancy at each POI. By modeling movement from CBGs,
our model canidentify at-risk populations and correctly predict, solely
from mobility patterns, that disadvantaged racial and socioeconomic
groups face higher rates of infection. Our model thus enables analysis
ofurgent health disparities; we useit to illuminate two mobility-related
mechanisms driving these disparities and to evaluate the disparate
impact of reopening on disadvantaged groups.

Mobility network model

We use datafrom SafeGraph, acompany that aggregates anonymized
location datafrom mobile applications, to study mobility patterns from
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March 1-May 2, 2020. For each metro area, we represent the move-
mentofindividuals between CBGs and POls as a bipartite network with
time-varying edges, where the weight of an edge between a CBG and
POl represents the number of visitors from that CBG to that POl ata
given hour (Figure 1a). SafeGraph also provides the areain square feet
of each POI, as well as its North American Industry Classification Sys-
tem (NAICS) category (e.g., fitness center, full-service restaurant) and
medianvisit durationin minutes. We validated the SafeGraph mobility
data by comparing to Google mobility data (Figure S1, Tables S2-S3),
and used iterative proportional fitting® to derive POI-CBG networks
fromthe raw SafeGraph data. Overall, these networks comprise 5.4 bil-
lion hourly edges between 56,945 CBGs and 552,758 POIs (ED Table1).

We overlay a SEIR model on each mobility network™*, where each
CBG maintainsits own susceptible (S), exposed (E), infectious (I), and
removed (R) states (Figure 1b). New infections occur at both POls and
CBGs, with the mobility network governing how subpopulations from
different CBGsinteractas they visit POIs. We use each POI's area, median
visit duration, and time-varying density of infectious individuals to
determine the POI's hourly infection rate. The model has only three free
parameters, which scale (1) transmission rates at POls, (2) transmission
ratesat CBGs, and (3) theinitial proportion of exposed individuals (ED
Table 2); allthree parameters remain constant over time. We calibrate a
separate model for each metro area using confirmed case counts from
The New York Times by minimizing root mean square error (RMSE) to
daily incident cases®. Our model accurately fits observed daily case
countsin all 10 metro areas from March 8-May 9, 2020 (Figure 1c,d).
Additionally, when only calibrated on case counts up to April 14, the
model predicts case counts reasonably well on the held-out time period
from April15-May9,2020 (Figure 1cand ED Figure 1a). Our key technical
findingis that the dynamic mobility network allows even our relatively
simple SEIR model with just three static parameters to accurately fit
observed cases, despite changing policies and behaviors during that
period.

Mobility reduction and reopening plans

The magnitude of mobility reductionis at least asimportant as
itstiming

Mobility in the US dropped sharply in March 2020: e.g., overall POI
visits in the Chicago metro area fell by 54.7% between the first week of
March and the first week of April 2020. We constructed counterfactual
mobility networks by scaling the magnitude of mobility reduction
down and by shifting the timeline earlier and later, and applied our
model to the counterfactual networks to simulate the resulting infec-
tion trajectories. Across metro areas, we found that the magnitude of
mobility reduction was at least as important as its timing (Figure 2a,
Tables S4-S5): e.g., if the mobilityreductionin the Chicago metroarea
had been only one quarter as large, predicted infections would have
increased by 3.3x (95% Cl, 2.8-3.8), compared to a1.5x (95% Cl,1.4-1.6)
increase had people begun reducing their mobility one full week later.
Furthermore, if no mobility reduction had occurred at all, predicted
infectionsin the Chicago metro area would have increased by a strik-
ing 6.2x(95%Cl, 5.2-7.1). Our results concord with earlier findings that
mobility reductions can dramatically reduce infections'®**3*3*,

A minority of POIs account for a majority of predicted infections
We next investigated if how we reduce mobility—i.e., to which POIs—
matters. We computed the number of infections that occurred at
each POl in our simulations from March 1-May 2, 2020, and found
that a majority of predicted infections occurred at a small fraction
of “superspreader” POIs; e.g., in the Chicago metro area, 10% of POIs
accounted for 85% (95% Cl, 83%-87%) of the predicted infections at POls
(Figure 2b, Figure S10). Certain categories of POIs also contributed far
moretoinfections (e.g., full-servicerestaurants, hotels), although our
model predicted time-dependent variation in how much each category

contributed (ED Figure 2). For example, restaurants and fitness cent-
ers contributed less to predicted infections over time, likely due to
lockdown orders closing these POls, while grocery stores remained
steady or even grew in their contribution, which concords with their
status as essential businesses.

Reopening with reduced maximum occupancy

Ifaminority of POIs produce the majority of infections, then reopening
strategies that specifically target high-risk POIs should be especially
effective. To test one such strategy, we simulated reopeningonMay 1,
and modeled the effects of reducing maximum occupancyin which the
numbers of hourly visits to each POl returned to their “normal” levels
fromthe first week of Marchbut were capped ifthey exceeded afraction
of the POI’'s maximum occupancy™. Full reopening without reducing
maximum occupancy produced aspike in predicted infections: in the
Chicago metro area, our models projected that an additional 32% (95%
Cl, 25%-35%) of the population would be infected by the end of May
(Figure 2c). However, reducing maximum occupancy substantially
reduced risk without sharply reducing overall mobility: capping at
20% maximum occupancy in the Chicago metro area cut down pre-
dicted new infections by more than 80% but only lost 42% of overall
visits, and we observed similar trends across other metro areas (ED
Figure 3). This highlights the non-linearity of predicted infections asa
function of visits: one canachieve a disproportionately large reduction
ininfections withasmallreductionin visits. Furthermore, compared to
another reopening strategy that uniformly reduced visits to each POI
fromtheir levelsinearlyMarch, reducing maximum occupancy always
resulted in fewer predicted infections for the same number of total
visits(Figure 2c and ED Figure 4). This is because reduced maximum
occupancy takes advantage of the time-varying visit density within
each POI, disproportionately reducing visits to the POl during the most
risky high-density periods, but leaving visit counts unchanged during
less risky periods. These results support earlier findings that precise
interventions, like reducing maximum occupancy, may be more effec-
tive than less targeted measures, while incurring substantially lower
economic costs™.

Relative risk of reopening different categories of POIs

Because we found that certain POI categories contributed far more
to predicted infections in March (ED Figure 2), we also expected that
reopening some POl categories would be riskier than reopening others.
To assess this, we simulated reopening each category in turn on May
1(by returning its mobility patterns to early March levels, as before),
while keeping all other POIs at their reduced mobility levels from the
end of April. We found large variationin predicted reopening risks: on
average across metro areas, full-service restaurants, gyms, hotels, cafes,
religious organizations, and limited-service restaurants produced the
largest predicted increasesininfections when reopened (ED Figure 5d).
Reopeningfull-service restaurants was particularly risky: in the Chicago
metro area, we predicted an additional 596k (95% Cl, 434k-686k) infec-
tions by the end of May, more than triple the next riskiest POl category
(Figure 2d). These risks are summed over all POls in the category, but
therelative risks after normalizing by the number of POIs were broadly
similar (ED Figure 5c). These categories were predicted to more be dan-
gerous because, in the mobility data, their POlIs tended to have higher
visit densities and/or visitors stayed there longer (Figures S15-S24).

Demographic disparities in infections

We characterize the differential spread of SARS-CoV-2 along demo-
graphic lines by using US Census data to annotate each CBG with
itsracial composition and median income, then tracking predicted
infection rates in CBGs with different demographic compositions:
for example, within each metro area, comparing CBGs in the top and
bottom deciles forincome. We use this approach to study the mobility
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mechanisms behind disparities and to quantify how different reopen-
ing strategies impact disadvantaged groups.

Predicting disparities from mobility data

Despite only having access to mobility data and no demographic infor-
mation, our models correctly predicted higher risks of infectionamong
disadvantaged racial and socioeconomic groups®®. Across all metro
areas, individuals from CBGs in the bottom decile for income were
substantially likelier to have beeninfected by the end of the simulation,
even though all individuals began with equal likelihoods of infection
(Figure 3a). This predicted disparity was driven primarily by a few POI
categories (e.g., full-service restaurants), which infected far larger
proportions of lower-income CBGs than higher-income CBGs (Figure 3¢
and S2). We similarly found that CBGs with fewer white residents had
higher predictedrisks of infection, although results were more variable
across metro areas (Figure 3b). In SI Discussion, we confirm that the
magnitude of the disparities our model predicts are generally consist-
entwith real-world disparities and further explore the large predicted
disparities in Philadelphia, which stem from substantial differences
inthe POIs that are frequented by higher- versus lower-income CBGs.
In the analysis below, we discuss two mechanisms producing higher
predicted infection rates among lower-income CBGs, and we show in
ED Figure 6 and ED Table 4 that similar results hold for racial dispari-
tiesas well.

Lower-income CBGs saw smaller reductions in mobility

A first mechanism producing disparities was that, across all metro
areas, lower-income CBGs did not reduce their mobility as sharply
in the first few weeks of March 2020, and had higher mobility than
higher-income CBGs for most of March through May (Figure 3d, ED
Figure 6). For example, in April, lower-income CBGs in the Chicago
metro area had 27% more POl visits per capita than higher-income
CBGs. Category-level differences in visit patterns partially explained
theinfection disparities withineach category:e.g., lower-income CBGs
made substantially more visits per capita to grocery stores thandid
higher-income CBGs (Figure S3), and consequently experienced more
predicted infections at that category (Figure S2).

POIs visited by lower-income CBGs have higher transmission rates
Differencesin visits per capita do not fully explain the infection dispari-
ties: for example, Cafes & Snack Bars were visited more frequently by
higher-income CBGs in every metro area (Figure S3), but our model
predicted that Cafes & Snack Bars infected a larger proportion of
lower-income CBGs in the majority of metro areas (Figure S2). We
found that even within a POl category, the predicted transmission
rates at POIs frequented by lower-income CBGs tended to be higher
than the corresponding rates forhigher-income CBGs (Figure 3e; ED
Table 3), because POls frequented by lower-income CBGs tended to
be smaller and more crowded inthe mobility data. As a case study, we
examined grocery stores in further detail. In 8 of the 10 metro areas,
visitors from lower-income CBGs encountered higher predicted trans-
mission rates at grocery stores than visitors from higher-income CBGs
(mediantransmission rateratio of2.19,ED Table 3). Why was one visit to
the grocerystore predicted to be twice as dangerous for alower-income
individual? SafeGraph data showed that the average grocery store
visited by lower-income individuals had 59% more hourly visitors per
square foot, and their visitors stayed 17% longer on average (medi-
ans across metro areas). These findings highlight how fine-grained
differences in mobility patterns—how often people go out and which
POIs they go to—can ultimately contribute to dramatic disparities in
predicted infection outcomes.

Reopening plans must account for disparate impact
Because disadvantaged groups suffer a larger burden of infection, it
is critical to not just consider the overall impact of reopening plans
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butalso their disparate impact on disadvantaged groups specifically.
For example, our model predicted that full reopening in the Chicago
metro area would result in an additional 39% (95% Cl, 31%-42%) of the
population of CBGs in the bottomincome decile being infected within
amonth, compared to 32% (95% Cl, 25%-35%) of the overall popula-
tion (Figure 3f; results for all metro areas in ED Figure 3). Similarly,
Figure S4illustrates that reopening individual POl categories tends to
havealarger predicted impact onlower-income CBGs. More stringent
reopening plans produce smaller absolute disparities in predicted
infections—e.g., we predict that reopening at 20% of maximum occu-
pancy in Chicago would result in additional infections for 6% (95%
Cl, 4%-8%) of the overall population and 10% (95% Cl, 7%-13%) of the
population in CBGs in the bottom income decile (Figure 3f)—though
the relative disparity remains.

Discussion

The mobility dataset we use has limitations: it does not cover all
populations, does not contain all POls, and cannot capture sub-CBG
heterogeneity. Our model itselfiis also parsimonious, and does not
include all real-world features relevant to disease transmission. We
discuss these limitations in more detail in SI Discussion. However, the
predictive accuracy of our model suggests that it broadly captures the
relationship between mobility and transmission, and we thus expect
our broad conclusions—e.g;, that people from lower-income CBGs
have higher infection rates in part because they tend to visit denser
POIs and because they have not reduced mobility by as much (likely
because they cannot as easily work from home*)—to hold robustly.
Our fine-grained network modeling approach naturally extends to
other mobility datasets and models which capture more aspects of
real-world transmission, and these represent interesting directions
for future work.

Our results can guide policymakers seeking to assess competing
approaches to reopening. Despite growing concern about racial and
socioeconomic disparitiesininfections and deaths, it has been difficult
for policymakers toact onthose concerns; they are currently operating
without much evidence onthe disparate impacts of reopening policies,
prompting calls for research that both identifies the causes of observed
disparities and suggests policy approaches to mitigate them3%*"38,
Our fine-grained mobility modeling addresses both these needs. Our
results suggest thatinfection disparities are not the unavoidable con-
sequence of factors that are difficult to addressin the short term, like
differencesin preexisting conditions; on the contrary, short-termpolicy
decisions can substantially affect infection outcomes by altering the
overall amount of mobility allowed and the types of POls reopened.
Considering the disparate impact of reopening plans may lead poli-
cymakers to adopt policies that can drive down infection densities in
disadvantaged neighborhoods by supporting, e.g., (1) more stringent
caps on POl occupancies, (2) emergency food distribution centers to
reduce densities in high-risk stores, (3) free and widely available testing
in neighborhoods predicted to be high risk (especially given known
disparitiesinaccesstotests?), (4) improved paid leave policy orincome
supports that allow essential workers to curtail mobility when sick,
and (5) improved workplace infection prevention for essential work-
ers, such as high-quality PPE, good ventilation, and distancing when
possible. As reopening policies continue to be debated, it is critical
to build tools that can assess the effectiveness and equity of differ-
entapproaches. We hope that our model, by capturing heterogeneity
across POls, demographic groups, and cities, helps address this need.

Online content

Anymethods, additional references, Nature Research reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions



and competinginterests; and statements of dataand code availability
are available at https://doi.org/10.1038/s41586-020-2923-3.

Buckee, C. O. et al. Aggregated mobility data could help fight COVID-19. Science 368,
145-146 (2020).

Wilson, C. These Graphs Show How COVID-19 Is Ravaging New York City’s Low-Income
Neighborhoods. Time (2020). Available at https://time.com/5821212/
coronavirus-low-income-communities/.

Garg, S. et al. Hospitalization Rates and Characteristics of Patients Hospitalized with
Laboratory-Confirmed Coronavirus Disease 2019 — COVID-NET, 14 States, March
1—30, 2020. (CDC Morbidity and Mortality Weekly Report (MMWR), 2020). Available at
https://www.cdc.gov/mmwr/volumes/69/wr/mm6915e3.htm.

Reeves, R. V. & Rothwell, J. Class and COVID: How the less affluent face double risks.
The Brookings Institution (2020). Available at https://www.brookings.edu/blog/
up-front/2020/03/27/class-and-covid-how-the-less-affluent-face-double-risks/.
Pareek, M. et al. Ethnicity and COVID-19: an urgent public health research priority.
The Lancet 395, 1421-1422 (2020).

van Dorn, A., Cooney, R. E. & Sabin, M. L. COVID-19 exacerbating inequalities in the US.
The Lancet 395, 1243-1244 (2020).

Yancy, C. W. COVID-19 and African Americans. JAMA 323, 1891-1892 (2020).
Chowkwanyun, M. & Reed Jr, A. L. Racial Health Disparities and Covid-19—Caution and
Context. New England Journal of Medicine 383, 201-203 (2020).

Flaxman, S. et al. Estimating the effects of non-pharmaceutical interventions on COVID-19
in Europe. Nature 584, 257-261(2020).

Rojas, R. & Delkic, M. As States Reopen, Governors Balance Existing Risks With New Ones.
The New York Times (2020). Available at https://www.nytimes.com/2020/05/17/us/
coronavirus-states-reopen.html.

Endo, A. et al. Estimating the overdispersion in COVID-19 transmission using outbreak
sizes outside China. Wellcome Open Research 5 (2020).

Adam, D. C. et al. Clustering and superspreading potential of SARS-CoV-2 infections in
Hong Kong. Nature Medicine (2020).

Park, S. Y. et al. Coronavirus Disease Outbreak in Call Center, South Korea. Emerging
Infectious Diseases 26, (2020).

Bi, Q. et al. Epidemiology and transmission of COVID-19 in 391 cases and 1286 of their
close contacts in Shenzhen, China: a retrospective cohort study. The Lancet Infectious
Diseases 20, 911-919 (2020).

Chinazzi, M. et al. The effect of travel restrictions on the spread of the 2019 novel
coronavirus (COVID-19) outbreak. Science 368, 395-400 (2020).

Jia, J. S. et al. Population flow drives spatio-temporal distribution of COVID-19 in China.
Nature 582, 389-394 (2020).

Pei, S., Kandula, S. & Shaman, J. Differential Effects of Intervention Timing on COVID-19
Spread in the United States. medRxiv (2020). Available at https://doi.org/10.1101/2020.05.
15.20103655.

Lai, S. et al. Effect of non-pharmaceutical interventions to contain COVID-19 in China.
Nature 585, 410-413 (2020).

Badr, H. et al. Association between mobility patterns and COVID-19 transmission in the
USA: a mathematical modelling study. The Lancet Infectious Diseases (2020).

Li, R. et al. Substantial undocumented infection facilitates the rapid dissemination of
novel coronavirus (SARS-CoV2). Science 368, 489-493 (2020).

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

Pei, S. & Shaman, J. Initial Simulation of SARS-CoV2 Spread and Intervention Effects in the
Continental US. medRxiv (2020). Available at https://doi.org/10.1101/2020.03.21.20040303.
Aleta, A. et al. Modeling the impact of social distancing, testing, contact tracing and
household quarantine on second-wave scenarios of the COVID-19 epidemic. medRxiv
(2020). Available at https://doi.org/10.1101/2020.05.06.20092841.

Duque, D. et al. COVID-19: How to Relax Social Distancing If You Must. medRxiv (2020).
Available at https://doi.org/10.1101/2020.04.29.20085134.

Block, P. et al. Social network-based distancing strategies to flatten the COVID-19 curve in
a post-lockdown world. Nature Human Behaviour 4, 588-596 (2020).

Karin, O. et al. Adaptive cyclic exit strategies from lockdown to suppress COVID-19
and allow economic activity. medRxiv (2020). Available at https://doi.org/10.1101/202
0.04.04.20053579.

Gao, S. et al. Mapping county-level mobility pattern changes in the United States in
response to COVID-19. SIGSPATIAL Special 12, 16-26 (2020).

Klein, B. et al. Assessing changes in commuting and individual mobility in major
metropolitan areas in the United States during the COVID-19 outbreak (2020). Available at
networkscienceinstitute.org/publications/assessing-changes-in-commuting-and-individual-
mobility-in-major-metropolitan-areas-in-the-united-states-during-the-covid-19-outbreak.
Benzell, S. G., Collis, A. & Nicolaides, C. Rationing social contact during the COVID-19
pandemic: Transmission risk and social benefits of US locations. Proceedings of the
National Academy of Sciences 17, 14642-14644 (2020).

Baicker, K. et al. Is It Safer to Visit a Coffee Shop or a Gym? The New York Times (2020).
Available at https://nytimes.com/interactive/2020/05/06/opinion/coronavirus-us-reopen.
html.

Hsiang, S. et al. The effect of large-scale anti-contagion policies on the coronavirus
(COVID-19) pandemic. Nature 584, 262-267 (2020).

Deming, W. E. & Stephan, F. F. On a least squares adjustment of a sampled frequency
table when the expected marginal totals are known. The Annals of Mathematical Statistics
1, 427-444 (1940).

The New York Times. Coronavirus (Covid-19) Data in the United States (2020). Available at
https://github.com/nytimes/covid-19-data.

Tian, H. et al. An investigation of transmission control measures during the first 50 days of
the COVID-19 epidemic in China. Science 368, 638-642 (2020).

Watts, D. J. et al. Multiscale, resurgent epidemics in a hierarchical metapopulation model.
Proceedings of the National Academy of Sciences 102, 11157-11162 (2020).

California Department of Public Health. COVID-19 Industry Guidance: Retail (2020).
Available at https://covid19.ca.gov/pdf/guidance-retail.pdf.

Birge, J., Candogan, O., & Feng, Y. Controlling Epidemic Spread: Reducing Economic
Losses with Targeted Closures (2020). Available at https://bfi.uchicago.edu/wp-content/
uploads/BFI_WP_202057-1.pdf.

Webb Hooper, M., Napoles, A. M., & Pérez-Stable, E. J. COVID-19 and Racial/Ethnic
Disparities. JAMA 323, 2466-2467 (2020).

Laurencin, C. T. & McClinton, A. The COVID-19 Pandemic: a Call to Action to Identify and
Address Racial and Ethnic Disparities. Journal of Racial and Ethnic Health Disparities 7,
398-402 (2020).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2020

Nature | www.nature.com | 4


https://doi.org/10.1038/s41586-020-2923-3
https://time.com/5821212/coronavirus-low-income-communities/
https://time.com/5821212/coronavirus-low-income-communities/
https://www.cdc.gov/mmwr/volumes/69/wr/mm6915e3.htm
https://www.brookings.edu/blog/up-front/2020/03/27/class-and-covid-how-the-less-affluent-face-double-risks/
https://www.brookings.edu/blog/up-front/2020/03/27/class-and-covid-how-the-less-affluent-face-double-risks/
https://www.nytimes.com/2020/05/17/us/coronavirus-states-reopen.html
https://www.nytimes.com/2020/05/17/us/coronavirus-states-reopen.html
https://doi.org/10.1101/2020.05.15.20103655
https://doi.org/10.1101/2020.05.15.20103655
https://doi.org/10.1101/2020.03.21.20040303
https://doi.org/10.1101/2020.05.06.20092841
https://doi.org/10.1101/2020.04.29.20085134
https://doi.org/10.1101/2020.04.04.20053579
https://doi.org/10.1101/2020.04.04.20053579
https://nytimes.com/interactive/2020/05/06/opinion/coronavirus-us-reopen.html
https://nytimes.com/interactive/2020/05/06/opinion/coronavirus-us-reopen.html
https://github.com/nytimes/covid-19-data
https://covid19.ca.gov/pdf/guidance-retail.pdf
https://bfi.uchicago.edu/wp-content/uploads/BFI_WP_202057-1.pdf
https://bfi.uchicago.edu/wp-content/uploads/BFI_WP_202057-1.pdf

Article

(a) Mobility networks in Chicago metro area

March 2, 2020 (Monday), 1pm

Points of
interest (POls)

Census block
groups (CBGs) |
Points of

interest (POls) |

Census block
groups (CBGs) |

Model fit for Chicago metro area

Out-of-sample fit Full fit

Model / x —— Model predictions
3.0k ! T el
calibrated | / o eported cases
25k{  before this |/ = fs "
date / o 4

Daily confirmed cases

Epidemiological model

"Re v

W,, = # visits from c;to p;in hour ¢

(d) Model fits for other metro areas (full fit)

Dallas Houston

Atlanta
o Ao

[ -
10.0K New York City

Washington DC

&

05-09 03-08 04-15 05-09

o b
03-08

04-15

Figure1|Model description andfit. (a) The mobility network captures hourly
visits from each census block group (CBG) to each point of interest (POI). The
vertical linesindicate that most visits are between nearby POIs and CBGs. Visits
dropped dramatically from March (top) to April (bottom), asindicated by the
lower density of grey lines. (b) We overlaid a disease spread model on the
mobility network, with each CBG havingits own set of SEIR compartments.
New infections occur at both POIs and CBGs, with the mobility network
governing how subpopulations from different CBGs interact as they visit POIs.
(c) Left: To test out-of-sample prediction, we calibrated the model on data
before April 15,2020 (vertical black line). Even though its parameters remain
fixed over time, the model accurately predicts the case trajectoryinthe
Chicago metro area after April 15by using mobility data (RMSE on daily cases =
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406 for daterange April 15-May 9). Right: Model fit further improved when we
calibrated the modelon the full range of data (RMSE on daily cases =387 for
daterange April15-May 9). (d) We fit separate models to 10 of the largest US
metropolitan statistical areas, modeling a total population of 98 million
people; here, we show fullmodelfits, asin (c)-Right. In (c) and (d), the blue line
represents model predictions and grey x’s represent the daily reported cases;
since theytend to have great variability, we also show the smoothed weekly
average (orangeline). Shaded regions denote 2.5th and 97.5th percentiles
across parameter sets and stochasticrealizations. Across metro areas, we
sample 97 parameter sets, with 30 stochastic realizations each (N =2,910); see
Table S6 for the number of sets per metro area.
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Figure 2| Assessing mobility reduction and reopening. The Chicago metro
areaisusedasanexample, butreferencesto results for all metro areas are
provided for each subfigure. (a) Counterfactual simulations (left) of past
mobility reductionillustrate that the magnitude of reduction (middle) was at
least asimportantasits timing (right) (Tables S4-S5). (b) The model predicts
that mostinfections at POls occur atasmall fraction of “super-spreader” POls
(Figure S10). (c) Left: We plot cumulative predicted infections after one month
ofreopeningagainst the fraction of visits lost by partial instead of full
reopening (ED Figure 3); the annotations within the plot show the fraction of
maximum occupancy used as the cap. Compared to fullreopening, capping at
20% maximum occupancy in Chicago cuts down newinfections by more than
80%, while only losing 42% of overall visits. Right: Compared to uniformly

0.6

Fraction of visits lost from partial reopening
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Additional infections (per 100k),
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10t 104

reducing visits, the reduced maximum occupancy strategy always resultsina
smaller predicted increaseininfections for the same number of visits (ED
Figure 4). They-axis plots therelative difference between the predicted
number of newinfections under the reduced occupancy strategy compared to
uniformreduction. (d) Reopening full-service restaurants has the largest
predictedimpactoninfections, due to the large number of restaurants as well
astheir high visit densities and long dwell times (Figures S15-S24). Colors are
used todistinguish the different POl categories, but do not have any additional
meaning. Allresultsin this figure are aggregated across 4 parameter setsand
30stochasticrealizations (N=120). Shaded regionsin (a-c) denote the 2.5th-
97.5th percentiles; boxesin (d) denote theinterquartile range, with data points
outside the range individually shown.
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Figure 3| Mobility patterns give rise toinfection disparities. For (c-f), the
Chicago metro areais used as anexample, but references to results for all metro
areas are provided for each subfigure. (a) In every metro area, our model
predictsthat peopleinlower-income CBGs are likelier to be infected. (b) People
innon-white CBGs areaarealso likelier to be infected, althoughresults are
more variable across metro areas. (c) The overall predicted disparityis driven
by afew POl categories like full-service restaurants (Figure S2). (d) Onereason
for the predicted disparities is that higher-income CBGs were able to reduce
their mobility levels below those of lower-income CBGs (ED Figure 6). (e) Within
each POl category, people fromlower-income CBGs tend to visit POIs that have
higher predicted transmission rates (ED Table 3). The size of each dot
represents the average number of visits per capitamade to the category. The

top 10 out of 20 categories with the most visits are labeled, covering 0.48-2.88
visits per capita (Hardware Stores-Full-Service Restaurants). (f) Reopening (at
differentlevels of reduced maximum occupancy) leads to more predicted
infectionsin lower-income CBGs thanin the overall population (ED Figure 3). In
(c-f), purple denotes lower-income CBGs, yellow denotes higher-income CBGs,
andblue represents the overall population. Aside from (d) and (e), which were
directly extracted from mobility data, all results in this figure represent
predictions aggregated over model realizations. Across metro areas, we
sample 97 parameter sets, with 30 stochastic realizations each (N=2,910); see
Table S6 for the number of sets per metro area. Shaded regionsin (c) and (f)
denote the 2.5th-97.5th percentiles; boxesin (a-b) denote the interquartile
range, with data points outside the range individually shown.
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Methods

The Methods sectionis structured as follows. We describe the datasets
we use in Methods M1 and the mobility network that we derive from
these datasets in Methods M2. In Methods M3, we discuss the SEIR
model we overlay on the mobility network; in Methods M4, we describe
how we calibrate this model and quantify uncertainty in its predic-
tions. Finally, in Methods M5, we provide details on the experimental
procedures used for our analyses of mobility reduction, reopening
plans, and demographic disparities.

M1 Datasets

SafeGraph. We use data provided by SafeGraph, acompany that aggre-
gates anonymized location datafrom numerous mobile applications.
SafeGraphdata captures the movement of people between census block
groups (CBGs), which are geographical units that typically contain a
population of between 600 and 3,000 people, and points of interest
(POIs) like restaurants, grocery stores, or religious establishments.
Specifically, we use the following SafeGraph datasets:

1. Places Patterns® and Weekly Patterns (v1)*. These datasets con-
tain, for each POI, hourly counts of the number of visitors, estimates
of medianvisit durationin minutes (the “dwell time”), and aggregated
weekly and monthly estimates of visitors’ home CBGs. We use visitor
home CBG data from the Places Patterns dataset, as described below:
for privacy reasons, SafeGraph excludes ahome CBG from this dataset
iffewer than 5 devices were recorded at the POl from that CBG over the
course ofthe month. For each POI, SafeGraph also provides their North
American Industry Classification System (NAICS) category, as well as
estimates of its median visit duration in minutes and physical areain
square feet. (Areais computed using the footprint polygon SafeGraph
assigns to the POI***2) We analyze Places Patterns data from January
1,2019 to February 29, 2020 and Weekly Patterns data from March 1,
2020 to May 2,2020.

2.Social Distancing Metrics*}, which contains daily estimates of the
proportion of people staying home in each CBG. We analyze Social
Distancing Metrics datafrom March 1,2020 to May 2, 2020.

We focus on 10 of the largest metropolitan statistical areas in the
US (Extended Data Table 1). We chose these metro area s by taking a
random subset of the SafeGraph Patterns data and picking the 10 metro
area s with the most POls in the data. Our methods in this paper can
besstraightforwardly applied, in principle, tothe other metroareasin
the original SafeGraph data. For each metro area, we include all POIs
that meet all of the following requirements: (1) the POl is located in
the metroarea; (2) SafeGraph has visitdata for this POl for every hour
that we model, from 12 am on March 1, 2020:to 11 pm on May 2,2020;
(3) SafeGraph has recorded the home CBGs of this POI’s visitors for at
least one month fromJanuary 2019 to February 2020; (4) the POl is not
a“parent” POL. “Parent” POIs comprise a small fraction of POls in the
dataset which overlap andinclude the visits from their “child” POls: for
example, many malls in the dataset are parent POIs which include the
visits from storeswhich aretheir child POIs. To avoid double-counting
visits, we remove all parent POIs from the dataset. After applying these
POIfilters, weinclude all CBGs that have at least 1 recorded visit to at
least 10 of the remaining POls; this means that CBGs from outside the
metro areamay be included if they visit this metro area frequently
enough. Summary statistics of the post-processed dataarein Extended
DataTablel. Overall, we analyze 57k CBGs from the10 metroareas, and
over 310 M visits from these CBGs to nearly 553k POls.

SafeGraph data hasbeen used to study consumer preferences* and
political polarization®. More recently, it has been used as one of the
primary sources of mobility data in the US for tracking the effects of
the SARS-CoV-2 pandemic?**4¢*8 In SI Methods Section 1, we show
that aggregate trends in SafeGraph mobility data match up to aggre-
gate trends in Google mobility data in the US*, before and after the
imposition of stay-at-home measures. Previous analyses of SafeGraph

datahave shownthat itis geographically representative: for example,
itdoes not systematically over-represent individuals from CBGs in dif*-
ferent counties or with different racial compositions, income levels,
or educational levels**,

US Census. Our data on the demographics of census block groups
(CBGs) comes from the US Census Bureau’s American Community
Survey (ACS)*2. We use the 5-year ACS (2013-2017) to extract the median
household income, proportion of white residents, and proportion of
black residents of each CBG. For the total population of each CBG, we
use the most recent one-year estimates (2018); one-year estimates
are noisier but we wish to minimize systematic downward bias in our
total population counts (due to population growth) by making them
asrecentas possible.

New York Times. We calibrate our models using the COVID-19 dataset
published by the The New York Times*. Their dataset consists of cumu-
lative counts of cases and deaths in the United States over time, at the
state and county level. For each metro areathat we model, we sum over
the county-level counts to produce overall counts for the entire metro
area. We convert the cumulative case and death counts to daily counts
for the purposes of model calibration, as described in Methods M4.

Data ethics. The dataset from The New York Times consists of aggregat-
ed COVID-19 confirmed case and death counts collected by journalists
from public news conferences and public datareleases. For the mobility
data, consent was obtained by the third-party sources collecting the
data. SafeGraph aggregates datafrom mobile applications that obtain
opt-in consent from their users to collect anonymous location data.
Google’s mobility data consists of aggregated, anonymized sets of data
fromusers who have chosen to turn on the Location History setting.
Additionally, we obtained IRB exemption for SafeGraph datafromthe
Northwestern University IRB office.

M2 Mobility network

Definition. We consider acomplete undirected bipartite graphG= (), &)
with time-varying edges. The vertices Vare partitioned into two disjoint
sets C={cy, ..., C}, representing m census block groups (CBGs), and
P={p,, ...,p,} representing npoints of interest (POIs). From US Census
data, eachCBGc;islabeled withits population N, ,income distribution,
and racial and age demographics. From SafeGralph data, each POl p;is
similarly labeled with its category (e.g., restaurant, grocery store, or
religious organization), its physical size in square feet a, andtheme-
dian dwell time dpj of visitors to p,. The weight w}}) onanedge (¢, p) at
time trepresents our estimate of the number of individuals from CBG
¢; visiting POl p; at the t-th hour of simulation. We record the number
of edges (with non-zero weights) ineach metroareaand over all hours
fromMarch1,2020toMay 2,2020 in Extended Data Table 1. Across all
10 metro areas, we study 5.4 billion edges between 56,945 CBGs and
552,758 POls.

Network estimation (overview). The central technical challenge in
constructing this network is estimating the network weights W“={w,-(j‘)}
from SafeGraph data, since this visit matrix is not directly available
from the data. Our general methodology for network estimation is as
follows:

1.From SafeGraph data, we can derive atime-independent estimate
W of the visit matrix that captures the aggregate distribution of visits
from CBGs to POIs from January 2019 to February 2020.

2.However, visit patterns differ substantially from hour to hour (e.g.,
day versus night) and day to day (e.g., pre- versus post-lockdown). To
capture these variations, we use current SafeGraph data to estimate
the CBG marginals U, i.e., the number of peoplein each CBGwho are
outvisiting POIs at hour ¢, as well as the POl marginals 9, i.e., the total
number of visitors present at each POl p;at hour .
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3. Wethenapply theiterative proportional fitting procedure (IPFP)
to estimate an hourly visit matrix W thatis consistent with the hourly
marginals U® and V® but otherwise “as similar as possible” to the dis-
tribution of visits in the aggregate visit matrix W, in terms of
Kullback-Leibler divergence.

IPFPis a classic statistical method* for adjustingjoint distributions
to match pre-specified marginal distributions, and it is also known in
theliterature as biproportional fitting, the RAS algorithm, or raking®.
Inthe social sciences, it has been widely used toinfer the characteristics
oflocal subpopulations (e.g., within each CBG) from aggregate data> .
IPFP estimates the joint distribution of visits from CBGs to POls by
alternating between scaling each row to match the hourly row (CBG)
marginals U® and scaling each column to match the hourly column
(POI) marginals V. For further details about the estimation procedure,
we refer the reader to SI Methods Section 3.

M3 Model dynamics

Tomodelthe spread of SARS-CoV-2, we overlay ametapopulation disease
transmission model on the mobility network definedin Methods M2. The
transmission model structure follows prior work on epidemiological
models of SARS-CoV-2* but incorporates a fine-grained mobility net-
workintothe calculations of the transmission rate. We construct separate
mobility networks and models for each metropolitan statistical area.

We use a SEIR model with susceptible (S), exposed (E), infectious (/),
and removed (R) compartments. Susceptible individuals have never
beeninfected, but canacquire the virus through contact with infectious
individuals, whichmay happen at POIs or in their home CBG. They then
enter theexposed state, during which they have beeninfected butare
notinfectiousyet. Individuals transition from exposed toinfectious at
arateinversely proportional to the mean latency period. Finally, they
transition into the removed state at a rate inversely proportional to
the meaninfectious period. The removed state representsindividuals
who cannolongerbeinfected orinfect others, e.g., because they have
recovered, self-isolated, or died.

Each CBG ¢; maintains its own SEIR instantiation, with S©, £©, 12,
and R(”representmg howmanyindividualsinCBGc;arein eachdisease
stateat hourt,and N, =S+ EV+19+RY. Ateach hour ¢, we sample
the transitions between states as follows

@ n

N, ~Pois( 3 Ay wi) + Binom(S(,AS) (1)
¢ j=1

N§ o, ~Binom(E§f_), 1/6;) (2)

N{s¢, ~Binom(/,1/6), 3)

where /1(;) is the rate of infection at POl p; at time t; w{, the ij-th entry
of the visit matrix from the mobility network (Methods M2), is the
number of visitors from CBG¢; to POl p;at time ¢; /1(” isthebaserate of
infection thatis independent of visiting POIs; ;i is the mean latency
period; and ¢,is the mean infectious period.

We then update each state to reflect these transitions. Let

ASY = STV 50, and likewise for AEY, AIY),and ARY. Then,
ASY =~ N(Stc)ﬁgci 4)
AFY:= Ngf NE i, (5)
AIQ=NE, =N, (6)
ARY = N}f‘_L R, (7)

M3.1The number of new exposures NS -, Weseparate the number
of new exposures N“LE inCBG c;at time ¢into two parts: cases from
visiting POIs, which are $ampled from Pois((SY/N,)Y); 1/1(” V), and
other cases not captured by visiting POls, whichare sampled from
Bmom(Sg’,/lg)).

New exposures from visiting POls. We assume that any susceptible
visitor to POl p; at time ¢ has the same independent probability /lg
of being infected and transitioning from the susceptible (S) to the
exposed (E) state. Since there are wff) visitors from CBG ¢; to POI
p;attimet, and we assume thata S(Ct,)/Nc‘ fraction of them are suscep-
tible, the number of new exposures émoﬁg these visitorsis distributed
as Blnom(w(”S(”/NC ,/l(t)) POIS(/l(t) ‘”S(”/N ). The number of new ex-
posures among all outgomg VISltors from CBG c; is therefore
distributed as the sum of the above expression over all POls,
Pois((SY/N.) X} AL w).
We model the lnfectlon rate at POl p; at time ¢, /1(” ,B(‘) l(‘)/V(f)

astheproduct of its transmission rate ﬁ“)and proportlon ofjmfectlous

individuals /v, whereV/):= 3% wjf is the total number of visitors to
p;attimet. We model the transmlssmn rateat POl p;attime tas

., 2V
ﬂ,;j3=‘l"d;:,-'a_' (8

P
where apis the physical area of p;, and ¢ is a transmission constant
(shared acrossall POls) that we fit to data. Theinverse scaling of trans-
mission rate with area a, is a standard simplifying assumption*’. The
dwell time fraction dp € [0, 1] is what fraction of an hour an average
visitor to p;atany hour will spend there (SI Methods Section 3); it has
aquadratic effect on the POl transmission rate ﬁ(” becauseitreduces
both (1) the time that asusceptible visitor spends atp;and (2) theden-
sity of visitors at p,. With this expression for the transmission rate ﬁ(”

we can calculate the infection rate at POl p;at time t as

© _ pl) If!fj) 2 Ig/)
Apj :ﬁpj'mzlp'dp] a 9
P
For sufficiently large values of ¢ and a sufficiently large proportion
of infected individuals, the expression above can sometimes exceed
1. To address this, we simply clip the infection rate to 1. However, this
occurs very rarely for the parameter settings and simulation duration
that we use.
Finally, to compute the number of infectiousindividuals at p;at time
t, Ig) we assume that the proportion of infectious individuals among
the wk)VISItOI‘S top;froma CBG ¢, mirrors the overall density of infec-
tlonsl‘“/N inthat CBG, although we note that the scaling factor ¢ can
account for differences in the ratio of infectious individuals who visit
POlIs. This gives

m I(t)
[0:= Y "y
b

ko Ne, Yy

(10)

Base rate of new exposures not captured by visiting POls. In addi-
tion to the new exposures from infections at POlIs, we model a
CBG-specific base rate of new exposures that is independent of POI
visitactivity. This captures other sources of infections, e.g., household
infections or infections at POls that are absent from the SafeGraph
data. We assumethat ateach hour, every susceptible individualin CBG
c;hasabase probability /l(f) ofbecominginfected and transitioning to
the exposed state, where '

(t)

_'Bbase N



is the product of the base transmission rate .. and the proportion
of infectious individuals in CBG c,. S, is a constant (shared across all
CBGs) that we fit to data.

Overall number of new exposures. Putting all of the above together
yields the expression for the distribution of new exposures in CBG c;
attimet,

S© n
N‘S‘ctﬁfq-Pois(A;' Y Ay w|+Binom(s), AY)
¢ j=1

© n g’ (m o

. ¢ P C
¢ j=1 “p| k=1 "V (12)

new infections from visiting POIs

I(f)
. C;
+ Binom SO, B, -~ 1.

NC

i

base rate of new CBG infections

M3.2 The number of new infectious and removed cases. We model
exposed individuals asbecominginfectious atarateinversely propor-
tional to the mean latency period §;. At each time step ¢, we assume that
eachexposed individual hasa constant, time-independent probability
of becoming infectious, with

N‘E‘jﬁ,q - Binom(£Y, 1/6). (13)
Similarly, we model infectious individuals as transitioning to the
removed state at arate inversely proportional to the mean infectious
period §,, with

N{sg, ~Binom(,1/6), (14)

We estimate 6,= 96 hours?>*® and 6,= 84 hours? from prior literature.

M3.3 Model initialization. In our experiments, t=0is the first hour of
March 1, 2020. We approximate the infectious /and removed R com-
partments at =0 asinitially empty, withallinfected individualsin the
exposed Ecompartment. We further assume the same expected initial
prevalence p,inevery CBGc;. Att=0, everyindividualinthemetroarea
hasthesameindependent probability p, of being exposed Einstead of
susceptible S. We thus initialize the model state by setting

SO=N, -EY 5)
EQ-Binom(N,, p,) (16)
19=0 17)
RO=0. (18)

M3.4 Aggregate mobility and no-mobility baseline models

Comparison to aggregate mobility model. Our model uses a detailed
mobility network to simulate disease spread. To test if this detailed mod-
elisnecessary, or if our model is simply making use of aggregate mobil-
ity patterns, we tested an alternate SEIR model that uses the aggregate
number of visits made to any POl in the metro areain each hour, but not
the breakdown of visits between specific CBGs to specific POIs. Like our
model, the aggregate mobility model also captures new cases from visit-
ing POlIsand abase rate ofinfectionthatisindependent of POl visit activ-
ity ; thus, the two models have the same three free parameters (¢, scaling
transmission rates at POIs; B,,.., the base transmission rate ; and p,, the
initial fraction of infected individuals). However, instead of having

POl-specificrates of infection, the aggregate mobility model only captures
asingle probability that asusceptible personfrom any CBG willbecome
infected due to a visit to any POI at time ¢; we make this simplification
because the aggregate mobility modelnolonger hasaccess to the break-

downof'visitsbetween CBGs and POIs. This probability /1%, isdefined as

noo@
19, =yp- Y Xmwy 19 (19)
nm N

average mobility at time ¢

where mis the number of CBGs, nis the number of POIs, [ is the total
number of infectious individuals at time ¢, and Nis the total population
size of the metro area. For the base rate of infections in CBGs, we assume
the same process as in our network model: the probability A(Ct_) thata
susceptible personin CBG c; will become infectedin their CBGattime
tis equalto Sy, times the currentinfectious fraction of ¢;(Equation 11).
Puttingittogether, the aggregate mobilitymodel defines the number
of new exposures in CBG c;at time t as

NGk - Binom(S©, Ay -+

. 3
Binom(s®, 1)
- 7 N R
new infections from visiting POIs

base rate of new CBG infections

(20)

All other dynamics remain the same between the aggregate mobility
model and our networkmodel, and we calibrated the models in the same
way, which we will describe in Methods M4. We found that our network
model substantially outperformed the aggregate mobility model in
out-of-sample cases prediction: on average across metro areas, our
best-fit network model’s out-of-sample RMSE was only 58% that of the
best-fit aggregate mobility model (Extended Data Figure1). This demon-
strates that itisnot only general mobility patterns, but specifically the
mobility network that allows our model to accurately fit observed cases.

Comparison to baseline that does not use mobility data. To determine
the extent to which mobility datamight aidin modeling the case trajec-
tory, we also compared our model to a baseline SEIR model that does
notuse mobility dataand simply assumes that allindividuals withinan
metro area mix uniformly. In this no-mobility baseline, an individual’s
risk of being infected and transitioning to the exposed state at time tis

I(t)

N (21)

A(t) ::ﬁbase ’
where I is the total number of infectious individuals at time ¢, and
Nis the total population size of the metro area. As above, the other
model dynamics areidentical, and for model calibration we performed
asimilar grid search over B,,.. and p,. As expected, we found both the
network and aggregate mobility models outperformed the no-mobility
model on out-of-sample case predictions (Extended Data Figure 1).

M4 Model calibration and validation
Most of our model parameters caneither be estimated from SafeGraph
and US Census data, or taken from prior work (see Extended Data Table 2
forasummary). This leaves 3 model parameters that do not have direct
analogues in the literature, and that we therefore need to calibrate
with data:

1. The transmission constant in POIs, ¢ (Equation (9))

2.Thebase transmission rate, B,,.. (Equation (11))

3.Theinitial proportion of exposedindividuals at timet=0, p, (Equa-
tion (16)).

Inthis section, we describe how we fit these parameters to published
numbers of confirmed cases, as reported by The New York Times. We
fit models for each metro area separately.

M4.1Selecting parameter ranges
Transmission rate factors g and B,.... We select parameter ranges
for the transmission rate factors ¢ and S, by checking if the model
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outputs match plausible ranges of the basic reproduction number R,
pre-lockdown, since R, has been the study of substantial prior work
on SARS-CoV-2%. Under our model, we can decompose Ry, = Rp,ee + Rpors
where Rp, describes transmission due to POls and R,.. describes the
remaining transmission (asin Equation (12)). We first establish plausible
ranges for R, and R, before translating these into plausible ranges
for By, and .

We assume that R, ranges from 0.1-2. R, ,.. models transmission
that is not correlated with activity at POls in the SafeGraph dataset,
including within-household transmission and transmission at POI
categories which are not well-captured in the SafeGraph dataset. We
chose the lower limit of 0.1 because beyond that point, base transmis-
sion would only contribute minimally to overall R, whereas previous
work suggests that within-household transmission is a substantial
contributor to overall transmission® %2, Household transmission alone
is not estimated to be sufficient to tip overall R, above 1; for example,
asingleinfected individual has been estimated to cause an average of
0.32(0.22, 0.42) secondary within-household infections®®. However,
because R,,,. may also capture transmission at POls not captured in
the SafeGraph dataset, to be conservative, we chose an upper limit
of R, = 2; as we describe below, the best-fit models for all 10 metro
areashaveR, .. <2,and 9 out of 10 have R, <1. We allow R, to range
from1-3, which corresponds to allowing R, = Ryo; + Ryse to range from
1.1-5. Thisis a conservatively wide range, since prior work estimates a
pre-lockdown R, of 2-3%,

To determine the values of Ry, and R, that agiven pair of B, and
¢ imply, we seeded a fraction of index cases and then ran the model
on looped mobility data from the first week of March to capture
pre-lockdown conditions. We initialized the model by setting p,, the
initial proportion of exposed individuals at time t=0, to p,=10"*, and
thensamplingin accordance with Equation (16). Let N,be the number
of initial exposed individuals sampled. We computed the number of
individuals that these N, index cases went on to infect through base
transmission, Ny,.., and POl transmission, N,q,, Which gives

NPO]

Rpor= N, (22)
N
Rpase = I'\J;:)S(e' (23)

We averaged these quantities over stochastic realizations for each
metro area. Figure S6 shows that, as expected, R, .. is linear in S,
and Ry, is linear in ¢. Ry, lies in the plausible range when S, ... ranges
from 0.0012-0.024, and R, lies in the plausible range (for atleast one
metro area) when g ranges from 515-4,886, so these are the parameter
ranges we consider when fitting the model. As described in Methods
M4.2, we verified that case count data for all metro area s can be fit using
parameter settings for S, and ¢ within these ranges.

Initial prevalence of exposures, p,. The extent to which SARS-CoV-2
infections had spread inthe US by the start of our simulation (March1,
2020) is currently unclear®®. To account for this uncertainty, we allow
poto vary across alarge range between 107 and 10 As described in
Methods M4.2, we verified that case count datafor allmetro areascan
be fit using parameter settings for p, within this range.

M4.2 Fitting to the number of confirmed cases. Using the parameter
ranges above, we grid searched over ¢, f;..., and p, to find the models
that best fit the number of confirmed cases reported by The New York
Times (NYT)*. For each metro area, we tested 1,500 different combina-
tions of ¢, By.se and p,in the parameter ranges specified above, with pa-
rameters linearly spaced for ¢ and g, and logarithmically spread for p,,.

In Methods M3, we directly model the number of infections but not
the number of confirmed cases. To estimate the number of confirmed

cases, we assume that an r. = 0.12>%4*%¢ proportion of infections will
be confirmed, and moreover that they will confirmed exactly 6,=168
hours (7 days)?*¢ after becoming infectious. From these assumptions,
we can calculate the predicted number of newly confirmed cases across
all CBGsinthe metroareaondayd,

m 24d-6,
(dayd) _ .. .
Ncases =r Z 2

()
NECI_»I[['
i=1 1=24(d-1)+1-6,

(24)
where mindicates the total number of CBGs in the metro area and for
convenience we define N‘E”a, ,the number of newly infectious people
athourr,tobe Owhent<1. *

From NYT data, we have the reported number of new cases N(Cizsd)
foreach day d, summed over each county in the metro area. We compare
thereported number of cases and the number of cases that our model
predicts by computing the root-mean-squared-error (RMSE) between
each of the D=0T7/240 days of our simulations,

12 ~(day-d)
RMSE = J b L (VG =Nege)?. (25)
d=1

For each combination of model parameters and for eachmetro area, we
quantify modelfit with the NYT databy running 30 stochastic realiza-
tions and averaging their RMSE. Note that we measure model fit based
onthedaily number of new reported cases (as opposed to the cumula-
tive number of reported cases)®’.

Our simulation spans March 1to May 2, 2020, and we use mobility
datafromthat period. However, because we assume that cases will be
confirmed 6,=7 days after individuals become infectious, we predict
the number of cases with a 7 day offset, from March 8 to May 9, 2020.

MA4.3 Parameter selection and uncertainty quantification. Through-
out this paper, wereport aggregate predictions from different param-
eter sets of ,B,,.., and p,and multiple stochasticrealizations. For each
metro area, we:

1.Find the best-fit parameter set, i.e., with the lowest average RMSE
ondaily incident cases over stochastic realizations.

2.Select all parameter sets that achieve an RMSE (averaged over
stochastic realizations) within 20% of the RMSE of the best-fit param-
eter set.

3. Pool together all predictions across those parameter sets and all
oftheir stochasticrealizations, and report their meanand 2.5th/97.5th
percentiles.

Onaverage, each metro area has 9.7 parameter sets that achieve an
RMSE within 20% of the best-fitting parameter set (Table S6). For each
parameter set, we have results for 30 stochastic realizations.

This procedure corresponds torejectionsamplinginan Approximate
Bayesian Computation framework®, where we assume an error model
thatis Gaussian with constant variance; we pick an acceptance thresh-
old based on what the best-fit model achieves; and we use a uniform
parameter grid instead of sampling from a uniform prior. It quantifies
uncertainty from two sources. First, the multiple realizations capture
stochastic variability between model runs with the same parameters.
Second, simulating with all parameter sets that are within 20% of the
RMSE of the best fit captures uncertainty in the model parameters ¢,
Poase> aNd p. The latter is equivalent to assuming that the posterior
probability over the true parameters is uniformly spread among all
parameter sets within the 20% threshold.

M4.4 Model validation on out-of-sample cases. We validate our
models by showing that they predict the number of confirmed cases
on out-of-sample data when we have access to corresponding mobil-
ity data. For each metro area, we split the available NYT datasetinto a
training set (spanning March 8, 2020 to April 14, 2020) and a test set
(spanning April15,2020 to May 9,2020). We fit the model parameters



¢, Boaser and p,, as described inMethods M4.2, but only using the training
set. We then evaluate the predictive accuracy of the resulting model
on the test set. When running our models on the test set, we still use
mobility datafrom the test period. Thus, thisis an evaluation of whether
the models canaccurately predict the number of cases, given mobility
data, inatime period that was not used for model calibration. Extended
DataFigure 1shows that our network modelfits the out-of-sample case
datafairly well, and that our model substantially outperforms alternate
models that use aggregated mobility data (withoutanetwork) or do not
use mobility data atall (Methods M3.4). Note that we only use this train/
test split to evaluate out-of-sample model accuracy. All other results
are generated using parameter sets that best fit the entire dataset, as
described above.

M5 analysis details

In this section, we include additional details about the experiments
underlying the figures in the paper. We omit explanations for figures
that are completely described in the main text.

Counterfactuals of mobility reduction (Figure 2a, Tables S4-S5).
To simulate what would have happened if we changed the magnitude
or timing of mobility reduction, we modify the real mobility networks
fromMarch 1-May 2,2020, and then run our models on the hypotheti-
cal data. In Figure 2a, we report the total number of people per 100k
population everinfected (i.e.,in the exposed, infectious, and removed
states) by the end of the simulation.

To simulate a smaller magnitude of mobility reduction, we interpo-
late between the mobility network from the first week of simulation
(March1-7,2020), which we use to represent typical mobility levels,
and the actual observed mobility network for each week. Let W rep-
resent the observed visit matrix at the ¢-th hour of simulation, and let

f(t)=t mod 168 map ¢t to its corresponding hour in the first week of
simulation, since there are 168 hours in a week. To represent the sce-
nario where people had committed to a € [0, 1] times the actual
observed reductionin mobility, we constructavisit matrix Wg)that is
an a-convex combination of W and W/©,

(t):: (26)

Wo=awO+1-ayw/O,

Ifais1, then W(t) W®, and we use the actual observed mobility
network for the simulation. Onthe other hand, ifa=0, then W(t) wre
and we assume that people did not reduce their mobility levels at all
by looping the visit matrix for the first week of March throughout the
simulation. Any other a € [0, 1] interpolates between these two
extremes.

Tosimulate changing the timing of mobility reduction, we shift the
mobility network by d € [-7, 7] days. Let T represent the last hour in
our simulation (May 2,2020, 11 PM), let f(¢) = t mod 168 map t to its
corresponding hour in the first week of simulation as above, and
similarly let g(¢) map t to its corresponding hour in the last week of
simulation (April27-May 2,2020). We construct the time-shifted visit

.=t
matrix Wfi)

w2 if0<t-24d<T,

=W E2D e r-24d<0,
w24 giherwise.

(t)

Wy (27)

If d is positive, this corresponds to starting mobility reduction d
days later; if we imagine time on a horizontal line, this shifts the time
seriestotheright by 24d hours. However, doing so leaves the first 24d
hours without visit data, so we fill it in by reusing visit data from the
first week of simulation. Likewise, if d is negative, this corresponds to
starting mobility reduction d days earlier, and we fill in the last 24d
hours with visit data from the last week of simulation.

Distribution of predicted infections over POIs (Figures 2b, Extend-
ed Data 2, $10). We run our models on the observed mobility datafrom
March 1-May 2,2020 and record the number of predicted infections
that occur at each POI. Specifically, for each hour ¢, we compute the
number of expected infections that occur at each POI p; by taking the
number of susceptible people who visit p;in that hour multiplied by
the POlinfectionrate /l(” (Equation (9)).InFigures 2b and S10, we sort
the POIs by their total predlcted number of infections (summed over
hours) and plot the cumulative distribution of infections over this
ordering of POIs. In Extended DataFigure 2, we select the POl categories
that contribute the most to predicted infections and plot the daily
proportion of POl infections each category accounted for (summed
over POIs within the category) over time.

Reducing mobility by capping maximum occupancy (Figures 2c,
Extended Data 3). Weimplemented two partialreopening strategies:
one that uniformly reduced visits at POISs to a fraction of full activity,
and the other that “capped” each POI's hourly visits to a fraction of the
POI's maximum occupancy. For each reopening strategy, we started
the simulation at March 1,2020 and ran it until May 31, 2020, using
the observed mobility network from March1-April 30,2020, and then
using a hypothetical post-reopening mobility network from May 1-31,
2020, correspondingto the projected impact of that reopening strat-
egy. Because we only have observed mobility data from March 1-May
2,2020, we impute the missing mobility data up to May 31,2020 by
looping mobility data from the first week of March, as in the above
analysis on the effect of past reductions in mobility. Let Trepresent
the last hour for which we have observed mobility data (May 2,2020,
11PM). To simplify notation, we define

h(t):={t ife<T,

f(® otherwise, (28)

where, as above, f(t) = t mod 168. This function leaves t unchanged if
there is observed mobility data at time ¢, and otherwise maps ¢ to the
corresponding hour in the first week of our simulation.

To simulate a reopening strategy that uniformly reduced visits to
an y-fraction of their original level, where y € [0, 1], we constructed
the visit matrix

ift<t,

)
o ,_{W (29)

T lywhO otherwise,

where trepresents the first hour of reopening (May 1,2020,12 AM). In
otherwords, we use the actual observed mobility network up until hour
7,and then subsequently simulate an y-fraction of full mobility levels.
To simulate the reduced occupancy strategy, we first estimated the
maximum occupancy M,; of each POl p; as the maximum number of
visits that it ever had in one hour, across all of March 1to May 2, 2020.
Asinprevioussections, let w(”representthe i,j-thentryinthe observed
visit matrix W, i.e., the number of people from CBG c; who visited p;
inhourt,andlet V,” represent the total number of visitors to p;in that
hour, i.e., ¥, w?. We simulated capping at a S-fraction ofmaxnmum

occupancy, whereﬁ €[0,1], by constructing the visit matrix Wﬁ 'whose
i,j-thentryis

wj® ift<zorVy)<pM,,

7)) .

W=\ My wi® otherwise G0)
V(t) .

This corresponds to the following procedure: for each POl p;and time
t, we first check if t < 7 (reopening has not started) or lfv(” <pM,, (the
total number of visits to p; at time t is below the allowed maximum
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BM,).1fso, weleave wg-(‘) unchanged. Otherwise, we compute the scal-

ing factor % that would reduce the total visits to p;at time t down to

Vo
the allowed maximum BM,;, and then scale down all visits from each
CBGc;top;proportionately. For bothreopening strategies, we calculate
the predicted increase in cumulative incidence at the end of the reo-
pening period (May 31,2020), compared to the start of the reopening

period (May1,2020).

Relative risk of reopening different categories of POls (Figures 2d,
Extended Data 5, S11, S15-524). We study separately reopening the 20
POl categories with the most visits in SafeGraph data. In this analysis,
we follow prior work?® and do not study four categories: “Child Day
Care Services” and “Elementary and Secondary Schools” (because
childrenunder 13 are not well-tracked by SafeGraph); “Drinking Places
(Alcoholic Beverages)” (because SafeGraph seems to undercount these
locations®®) and “Nature Parks and Other Similar Institutions” (because
boundaries and therefore areas are not well-defined by SafeGraph).
We also exclude “General Medical and Surgical Hospitals” and “Other
Airport Operations” (because hospitals and air travel both involve
many additional risk factors our modelis not designed to capture). We
do not filter out these POIs during model fitting (i.e., we assume that
people visit these POls, and that transmissions occur there) because
including them still increases the proportion of overall mobility our
dataset captures; we simply do not analyze these categories, because
we wish to be conservative and only focus on categories where we are
most confident that we are capturing transmission faithfully.

This reopening analysis is similar to the previous experiments on
reducing maximum occupancy vs. uniform reopening. As above, we
set the reopening time rto May 1, 2020, 12 AM. To simulate reopening
a POl category, we take the set of POIs in that category, V, and set their
activity levels after reopening to that of the first week of March. For POls
not in the category V, we keep their activity levels after reopening the
same, i.e., we simply repeat the activity levels of the last week of our

data (April 27-May 2, 2020): This gives us the visit matrix /¥ with entries

wf ife<t,

)
f

w}jﬁ;: iftzt,p eV (31)

w;jg(” ift7,p & V.

As in the above reopening analysis, f(¢) maps ¢ to the corresponding
hour in the first week of March, and g(¢) maps ¢t to the corresponding
hour in the last week of our data. For each category, we calculate the
predicted difference between (1) the cumulative fraction of people
who have been infected by the end of the reopening period (May 31,
2020) and (2) the cumulative fraction of people infected by May 31
had we not reopened the POI category (i.e., if we simply repeated the
activity levels of the last week of our data). This seeks to model the
increase incumulative incidence by end of May from reopening the POI
category. In Extended Data Figure 5 and Figures S15-S24, the bottom
right panel shows the predicted increase for the category as a whole,
and the bottom leftpanel shows the predicted increase per PO (i.e., the
totalincrease divided by the number of POls in the category).

Per-capita mobility (Figures 3d, Extended Data 6, S3). Each group
of CBGs (e.g., the bottom income decile) comprises a set I/ of CBGs
that fit the corresponding criteria. In Figure 3d and Extended Data
Figure 6, we show the daily per-capita mobilities of different pairs of
groups (broken down by income and by race). To measure the per-capita
mobility of a group on day d, we take the total number of visits made

from those CBGs toany POL 3., ¥, < YD wd, and divide it by

the total population of the CBGs inthe group, Yccu N InFigure S3, we
show the total number of visits made by each group to each POI

category, accumulated over the entire data period (March 1-May 2,
2020) and then divided by the total population of the group.

Average predicted transmission rate of a POl category (Figure 3e,
Extended Data Tables 3-4). We compute the predicted average
hourly transmission rate experienced by a group of CBGs { at a POI
category Vas

T (O)p®
Zc,-eu ijev 21 wy ﬁ,,j_

B = o
¢

- (32)
Zc,-eu ijev ztzl w;

where, as above, ﬁg_) is the transmission rate at POl p;in hour ¢ (Equa-
tion (8)), w}j” is the number of visitors from CBG c; at POI p;inhourt,
and T'is the last hour in our simulation. This represents the expected
transmission rate encountered during a visit by someone from a CBG
ingroup U/ toaPOlin category V.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.
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the SafeGraph COVID-19 Data Consortium (https://www.safegraph.
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Extended DataFigure1|Mobility-based epidemiological model and its best-fit network model’s out-of-sample error (RMSE) was only 58% that of the
predictions. Predicted (blue) and true (orange) daily case counts for (a) our best-fitaggregate mobility model. All three models are calibrated on observed
model, which uses hourly mobility networks, (b) an SEIR model which uses case counts before April 15,2020 (vertical black line). The grey x’srepresent the
hourly aggregated mobility data, and (c) abaseline SEIR model which does not daily reported cases; since they tend to have great variability, we also show the
use mobility data (see Methods M3.4 for details). Incorporating mobility smoothed weekly average (orangeline). Shaded regions denote 2.5thand
informationimproves out-of-sample fitand having a network, instead of an 97.5th percentiles across sampled parameters and stochastic realizations.

aggregate measure, further improves fit: onaverage across metro areas, our
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Extended DataFigure 2| Distribution of POl infections over time. We
selected the POl categories that our models predicted contributed the most to
infections, and plotted the predicted proportion of POl infections each
category accounted for over time. Our model predicts time-dependent
variation of where transmissions may have occurred. For example, Full-Service
Restaurants (blue) and Fitness Centers (brown) contributed less to predicted
infections over time, likely due to lockdown orders closing these POls, while

grocery stores remained steady orevengrewin their predicted contribution,
likely because they remained open as essential businesses. Hotels & Motels
(yellow) also feature in these plots; most notably, the model predicts a peakin
their contributed infections in Miamiaround mid-March — this would align
with college spring break, with Miami as a popular vacation spot for students.
Theproportions are stacked in these plots, and the y-axes are truncated at 0.7
because every plot would only show “Other” from 0.7 to1.0.
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Extended DataFigure 3| Trade-offbetweennewinfections and visits lost
fromreopening. We simulate reduced maximum occupancy reopening
starting on May 1,2020 and run the simulationuntil the end of the month. Each
dotrepresentsthelevel of occupancy reduction:e.g., capping visits at 50% of
maximum occupancy. The y-coordinate represents the predicted number of
new infectionsincurred after reopening (per 100k population) and the
x-coordinate represents the fraction of visits lost from partial reopening
comparedto fullreopening. Shaded regions denote 2.5thand 97.5th
percentiles across parameter setsand stochastic realizations. In4 metro areas,

the predicted cost of newinfections from reopeningis roughly similar for
lower-income CBGs and the overall population, butin 5 metroareas, the
lower-income CBGs incur more predicted infections from reopening. Notably,
New York City (NYC) isthe only metro areawhere this trend is reversed; thisis
because the model predicts that such ahigh fraction—65% (95% Cl, 62%-68%) —
oflower-income CBGs inNYC had beeninfected before reopening that after
reopening, only aminority of the lower-income populationis still susceptible
(incomparison, the second highest fractioninfected before reopening was 31%
(95% Cl,28%-35%) for Philadelphia, and the rest ranged from 1%-14%).
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Extended DataFigure 4 | Reduced maximum occupancy versus uniform
reductionreopening. Compared to partially reopening by uniformly reducing
visits, the reduced maximum occupancy strategy—which disproportionately
targets high-risk POIs with sustained high occupancy—alwaysresultsina
smaller predicted increase ininfections for the same number of visits. The
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y-axis plots therelative difference betweenthe predicted increasein
cumulative infections (from May 1to May 31) under the reduced occupancy
strategy as compared to the uniformreduction strategy. The shaded regions
denote the 2.5th and 97.5th percentiles over sampled parameters and
stochastic realizations.



Article

All metro areas

(@) Full-service Restaurants {

Fitness Centers { +—— L —i
Cafes & Snack Bars  HIE———t=———m—e=
Hotels & Motels 1 ——
Limited-Service Restaurants - HIE—+=——
Religious Organizations -
Offices of Physicians
Grocery Stores -

Used Merchandise Stores 4 —lomm———
Pet Stores { HEL_F————+ =«

Sporting Goods Stores 1 r‘ ..
Other General Stores 4

|

Hobby & Toy Stores -
Hardware Stores 4
Automotive Parts Stores q
Department Stores

Gas Stations q

Pharmacies & Drug Stores
Convenience Stores -

New Car Dealers 1 +—— I

0 25 50 75 100 125 150 175 200
Dwell time (minutes)

(c) Full-service Restaurants
Fitness Centers
Cafes & Snack Bars
Hotels & Motels 4
Limited-Service Restaurants -
Religious Organizations -
Offices of Physicians
Grocery Stores
Used Merchandise Stores 1
Pet Stores -
Sporting Goods Stores -
Other General Stores 1
Hobby & Toy Stores -
Hardware Stores
Automotive Parts Stores
Department Stores +_« +_e+e o+ e
Gas Stations (== -
Pharmacies & Drug Stores {1 L eesseemee
Convenience Stores T Jommoeoe—e
New Car Dealers I r .

1072 107! 10° 10t
Additional infections (per 100k), compared to not reopening (per POI)
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mobility data, showing (a) the distribution of dwell time, and (b) the average
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point represents one POI; boxes depict the interquartile range across POls,
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poolacross modelrealizations from all metroareas, and show model
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Extended DataFigure 6 | Daily per-capita mobility over time. We compare mobility in the lowest/highest deciles of CBGs based on (a) median household

income and (b) percentage of white residents. See Methods M5 for details.
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Extended Data Table 1| Dataset summary statistics from March 1-May 2, 2020

Metro area CBGs | POIs Hourly edges | Total modeled pop | Total visits
Atlanta 3,130 | 39,411 | 540,166,727 | 7,455,619 27,669,692
Chicago 6,812 | 62,420 | 540,112,026 | 10,169,539 33,785,702
Dallas 4,877 | 52,999 | 752,998,455 | 9,353,561 37,298,053
Houston 3,345 | 49,622 | 609,766,288 | 7,621,541 32,943,613
Los Angeles 8,904 | 83,954 | 643,758,979 | 16,101,274 38,101,674
Miami 3,555 | 40,964 | 487,544,190 | 6,833,129 26,347,947
New York City 14,763 | 122,428 | 1,057,789,207 | 20,729,481 66,581,080
Philadelphia 4,565 | 37,951 | 304,697,220 | 6,759,058 19,551,138
San Francisco 2,943 | 28,713 | 161,575,167 | 5,137,800 10,728,090
Washington DC 4,051 | 34,296 | 312,620,619 | 7,740,276 17,898,324
All metro areas combined | 56,945 | 552,758 | 5,411,028,878 | 97,901,278 310,905,313




Extended Data Table 2 | Model parameters

Param. | Description Value (Source)

og mean latency period 96 hours**%

it mean infectious period 84 hours®*

de period from infectious to confirmed 7 days®*"!

Te percentage of cases which are detected 10%2463.69-71

Bbase base CBG transmission rate Variable (Estimated)

N, population size of CBG c; Variable (2018 US Census’’)

Y scaling factor for POI transmission Variable (Estimated)

w? # visitors from CBG c; to POI p; at time ¢ | Variable (SafeGraph)

ap, area of POI p; in square feet Variable (SafeGraph)

Do initial proportion of exposed population | Variable (Estimated)
©) initial susceptible population in CBG ¢; | (1 — po) N,

Eé?) initial exposed population in CBG ¢; po N,

10 initial infectious population in CBG¢; | 0

Rg?) initial removed population in CBG ¢; 0

If the parameter has a fixed value, we specify it under Value; otherwise, we write “Variable” to indicate that it varies across CBG / POl / metro area.
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Extended Data Table 3 | Predicted transmission rate disparities at each POI category between income groups

| Metro area | ATL [CHI [ DAL | HOU[LA [MIA [NY |[PHL [SF [ DC [ Median |
Full-Service 0.764 | 1.204 | 0.956 | 1.000 | 1.445[ 1.232| 2.035 | 2.883 | 1.758 | 1.171 [[ 1.218
Restaurants

Limited-Service 0.940| 0.950 | 1.002 | 0.906 | 1.067 | 0.872| 1.901| 1.614 | 0.994 | 0.962 || 0.978
Restaurants
Other  General | 0.782| 1.083 | 0.957 | 0.729 | 0.760 | 0.894 | 1.218 | 1.312 | 1.045| 0.950 || 0.954
Stores
Gas Stations 1.326| 1.865| 1.310| 1.515| 2.254| 2.195| 1.899| 6.461 | 1.357 | 1.870 || 1.868
Fitness Centers 0.536 | 0.907 | 0.708 | 0.670 | 1.461| 0.789 | 1.151| 1.516 | 0.995| 1.160 || 0.951
Grocery Stores 0.948 | 3.080 | 0.838 | 1.333 | 2.408 | 1.498 | 4.984 | 10.437| 2.478 | 1.977 || 2.192
Cafes & Snack | 1.385| 0.919| 0.716 | 1.120| 1.327| 2.168 | 1.943 | 1.757 | 0.982| 0.932 | 1.224
Bars
Hotels & Motels 1.228 | 1.200 | 0.814 | 0.804 | 1.229| 1.134| 1.260| 1.993 | 1.199| 1.346 || 1.214
Religious Organi- | 1.546 | 1.763 | 0.956 | 0.919 | 1.746 | 1.464 | 1.756 | 1.736 | 1.515| 1.852 || 1.641
zations
Hardware Stores | 3.938 | 3.340 | 1.575| 2.111 | 1.333| 0.939| 3.553 | 6.716 | 4.202 | 13.560| 3.446
Department 1.132| 1.230| 0.978 | 0911 | 1.083| 1.431 | 1.667 | 0.976 | 0.867 | 1.042 || 1.062
Stores
Offices of Physi- | 1.235| 0.721 | 0.667 | 1.036 | 1.141 | 1.687 | 1.307 | 1.319 | 1.193|.0.445 || 1.167
cians
Pharmacies & | 1.636| 1.389 | 1.176 | 0.854 | 1.718 | 1.555| 2.577 | 5.624 | 1.200| 1.699 | 1.596
Drug Stores
Sporting Goods | 0.936| 1.540| 1.129| 0.812| 1.168 | 0.700 | 1.253 | 1.161 | 0.826 | 2.777 || 1.145
Stores
Automotive Parts | 0.890 | 1.707 | 0.862 | 1.086 | 1.990 | 1.414 | 1.524 | 2.697 | 1.753 | 1.246 || 1.469
Stores
Used Merchan- | 0.993| 0.931| 1.000 | 1.315| 1.017| 1.074| 1.352| 1.668 | 1.587| 0.814 || 1.046
dise Stores

Convenience 1.208 | 0.932 | 1.613| 0.647 | 0.838| 0.824 | 1.736 | 2.322 | 1.086 | 1.428 || 1.147
Stores
Pet Stores 1.260| 0.820 | 1.192| 1.487 | 1.536| 0.776 | 3.558 | 1.652 | 2.124| 0.905 || 1.374

New Car Dealers | 2.036| 1.471 | 0.741 | 0.809 | 1.180| 1.377 | 2.022 | 1.129 | 0.395| 0.872 || 1.154
Hobby & Toy | 1.168| 1.110| 1.165| 0.853 | 1.771| 1.520| 1.525| 1.088 | 0.883 | 0.926 || 1.138
Stores

[ Median [ 1.188] 1.202] 0.968] 0.915] 1.330] 1.305] 1.746 ] 1.702 | 1.196 1.166 || |

We report the ratio of the average predicted transmission rate encountered by visitors from CBGs in the bottom income decile to that for the top income decile. A ratio greater than 1 means that
visitors from CBGs in the bottom income decile experienced higher (more dangerous) predicted transmission rates. See Methods M5 for details.



Extended Data Table 4 | Predicted transmission rate disparities at each POl category between racial groups

| Metro area | ATL [CHI [ DAL [ HOU[LA |[MIA [NY |[PHL [SF [DC [ Median |
Full-Service 0.802] 1.354| 0.981 [ 0.965| 1.065 | 1.167 | 2.418 | 2.661 | 1.223 | 1.013 || 1.116
Restaurants

Limited-Service 0.940 | 1.144 | 1.028 | 0.940 | 0.820| 0.919 | 2.136| 1.523 | 0.799 | 1.346 || 0.984
Restaurants
Other  General | 0.776 | 1.277 | 0.838 | 0.841 | 1.527 | 1.132| 2.158 | 1.313 | 0.925 | 1.312 || 1.204
Stores
Gas Stations 1.402 | 1.891| 1.389| 1.190| 1.336| 1.857 | 1.818 | 2.286 | 2.321 | 1.316 || 1.610
Fitness Centers 0.607 | 1.167 | 0.670 | 0.831 | 0.780| 1.066 | 1.447 | 1.977 | 1.103 | 1.205 || 1.084
Grocery Stores 0.589 | 3.664 | 0.613 | 1.195| 2.386 | 0.950 | 5.864 | 13.705| 2.243 | 2.262 || 2.252
Cafes & Snack | 1.308 | 1.104 | 0.845| 0.840| 0.976 | 2.619 | 1.767 | 2.456 | 1.045 | 0.867 || 1.074
Bars
Hotels & Motels | 0.977 | 1.007 | 1.366 | 0.718 | 1.112 | 1.024 | 1.449| 2.494 | 0.654 | 0.899 || 1.015
Religious Organi- | 0.938 | 1.606 | 1.060 | 0.953 | 2.096 | 1.795| 1.933 | 2.040 | 1.674 | 1.188 || 1.640
zations
Hardware Stores | 0.909 | 3.900 | 1.523 | 1.461 | 1.952| 0.586 | 5.032 | 3.898 | 11.103| 13.432|| 2.925
Department 1.081 | 1.301 | 0.805| 0.777 | 0.992 | 2.337 | 2.479 | 1.357 | 1.089 | 1.402 || 1.195
Stores
Offices of Physi- | 0.894 | 1.323 | 1.006 | 1.415| 0.898 | 1.117 | 1.652| 2.073 | 0.694 | 1.911 || 1.220
cians
Pharmacies & | 0.888| 1.376 | 0.930| 0.732| 1.538 | 1.674 | 3.315| 3.366 | 1.135 | 1.715 || 1.457
Drug Stores
Sporting Goods | 0.767 | 0.674 | 0.650 | 0.506 | 1.946 | 0.818 | 1.532 | 2.152 | 0.880 | 1.715 || 0.849
Stores
Automotive Parts | 1.049 | 1.479 | 1.010 | 1.353 | 2.998 | 2.657 | 1.740 | 3.387 | 1.646 | 0.601 || 1.562
Stores
Used Merchan- | 0.858 | 1.195| 0.699 | 1.060 | 1.270 | 0.593 | 1.500 | 3.024 | 1.425 | 0.799 || 1.128
dise Stores

Convenience 2.016 | 5.055| 1.272| 2.188 | 0.761 | 0.902 | 1.911| 2.276 | 1.239 | 1.844 || 1.878
Stores
Pet Stores 0.925| 1.624 | 0.724 | 1.465| 1.506 | 0.881 | 2.715| 10.182| 1.568 | 2.408 || 1.537

New Car Dealers | 1.008 | 1.398 | 0.812 | 0.736 | 0.942 | 0.998 | 1.977 | 0.866 | 0.772 | 0.383 || 0.904
Hobby & Toy | 2.569 | 0.853| 0.628 | 0.979 | 1.373 | 1.388 | 2.237 | 0.825 | 0.864 | 1.286 || 1.132
Stores

[ Median [0.932] 1.339] 0.888] 0.959] 1.303 | 1.092] 1.955] 2.281 | 1.119 | 1.314 || |

We report the ratio of the average predicted transmission rate encountered by visitors from CBGs with the lowest (bottom decile) proportion of white residents versus that for the top decile. A
ratio greater than 1 means that visitors from CBGs in the bottom decile experienced higher (more dangerous) predicted transmission rates. See Methods M5 for details.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

< The statistical test(s) used AND whether they are one- or two-sided
2N Only common tests should be described solely by name; describe more complex techniques in the Methods section.

{| A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.
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For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  No data collection was performed for this study; all analysis relied on previously collected datasets, as described in the Data section below.

Data analysis All data analysis was performed using Python with standard libraries. Code is available at http://snap.stanford.edu/covid-mobility and https://
github.com/snap-stanford/covid-mobility.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

Census data (https://www.census.gov/programs-surveys/acs), case and death counts from The New York Times (https://github.com/nytimes/covid-19-data), and
Google mobility data (https://www.google.com/covid19/mobility/) are publicly available. Cell phone mobility data is freely available to researchers, non-profits, and
governments through the SafeGraph COVID-19 Data Consortium (https://www.safegraph.com/covid-19-data-consortium).
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Behavioural & social sciences study design
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Study description This is a quantitative epidemiological modeling study.
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Research sample We study previously-collected data on 10 of the largest American metropolitan statistical areas. The data came from the following:
1) Anonymized mobility data from smartphone users from SafeGraph. SafeGraph data is obtained by "partnering with mobile
applications that obtain opt-in consent from its users to collect anonymous location data", per official SafeGraph documentation.
2) US Census
3) Case and death counts from The New York Times
4) Google mobility data

Sampling strategy We did not perform sampling, but relied on previously collected datasets. All datasets were chosen as they were comprehensive: the
case and death counts and Census data were designed to cover the entire population; Google mobility data covers a large subset of
the population; and previous analyses have shown that the SafeGraph anonymized cell phone mobility dataset is geographically
representative: for example, it does not systematically over-represent individuals from higher-income areas (https://
www.safegraph.com/blog/what-about-bias-in-the-safegraph-dataset).

Data collection We did not perform data collection, but relied on previously collected datasets. Census data is collected as described here: https://
www.census.gov/programs-surveys/acs. The cell phone mobility data is collected from cell phone geolocation information, and is
anonymized and aggregated. We accessed and downloaded the datasets in May 2020.

Timing We make use of data in the following ranges:
1) Safegraph mobility data: Jan 1, 2019 - May 2, 2020
2) US Census: 2013-2018
3) Case and death counts from The New York Times: March 8 - May 9, 2020
4) Google mobility data: March 1 - May 2, 2020

Data exclusions The original SafeGraph dataset contains 5.4 million points of interest (POls). We retain a POl in our final dataset if it satisfies the
following criteria: (1) it lies within one of the 10 American metropolitan areas that we analyze (out of 384 metropolitan statistical
areas total); (2) SafeGraph has visit data for this POI for every hour that we model, from 12am on March 1, 2020 to 11pm on May 2,
2020; (3) SafeGraph has recorded the home CBGs of this POI's visitors for at least one month from January 2019 to February 2020;
(4) the POl is not a "parent" PO, as defined in the Methods section. After applying these filters, our dataset contains 553k POls. Most
POls are filtered out because they do not lie within the 10 large metropolitan statistical areas that we study; this filtering decision
was made prior to any analysis for computational tractability reasons. In our analysis of POI-specific category risks, we do not analyze
6 categories of POIs because we wish to be conservative and only focus on categories where we are most confident we are fully
capturing transmission at the category: Child Day Care Services, Elementary and Secondary Schools, Drinking Places (Alcoholic
Beverages), Nature Parks and Other Similar Institutions, General Medical and Surgical Hospitals, and Other Airport Operations. The
justifications for these exclusions, which are based on prior work, are given in the Methods section.

Non-participation Because we relied on previously collected anonymized, aggregated data from cell phone mobility tracking, we did not have access to
individual-level data and do not know how many participants dropped out/declined participation.

Randomization This is not a randomized controlled trial and participants were not randomized into experimental groups.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.




Materials & experimental systems Methods

Involved in the study n/a | Involved in the study
Antibodies g |:| ChlIP-seq
Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |:| MRI-based neuroimaging
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Human research participants
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Policy information about studies involving human research participants

Population characteristics See above.

Recruitment See above. Prior work has looked into biases in the SafeGraph dataset (https://www.safegraph.com/blog/what-about-bias-in-
the-safegraph-dataset).

Ethics oversight The dataset from The New York Times consists of aggregated COVID-19 confirmed case and death counts collected by
journalists from public news conferences and public data releases. For the mobility data, consent was obtained by the third-
party sources collecting the data. SafeGraph aggregates data from mobile applications that obtain opt-in consent from their
users to collect anonymous location data. Google’s mobility data consists of aggregated, anonymized sets of data from users
who have chosen to turn on the Location History setting. Additionally, we obtained IRB exemption for SafeGraph data from
the Northwestern University IRB office.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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